Extending the Technology Acceptance Model: A Context-Specific Scale for Digital Design Tools in China’s Art Education within the Creative Industry

Main Article Content

Fan Zhang
Rainal Hidayat Wardi

Abstract

This research fills the gap of employee acceptance of digital design tools (EADDT) by developing a context-specific measurement scale for China’s art education and creative industries. The scale was developed across three studies using a mixed-methods approach. Study 1 involved semi-structured interviews with 75 art educators and creative professionals, identifying eight acceptance factors including Compatibility with Creative Processes (CCP), Training and Support (TS), Organizational Culture and Environment (OCE), Intrinsic Motivation (IM), Technical Reliability and Functionality (TRF), Resistance to Change (RC). In Study 2, 212 participants were used to do exploratory factor analysis (EFA) to refine item structures. Confirmatory factor analysis (CFA) of Study 3 (N = 526) provided strong model fit (SRMR = 0.052, NFI = 0.934) and robust psychometric properties (CR = 0.846–0.912; AVE = 0.524–0.627). Ultimately, a reliable 27-item EADDT scale is produced, which can be used to assess employees’ attitudes toward digital tools in design-based educational and professional contexts. The practical implications are in providing direction to organizational leaders and policymakers for designing training strategies, encouraging innovation cultures, and addressing resistance to digital transformation in the creative sector.

Article Details

Section

Educational Entrepreneurship

References

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T

Amabile, T. M. (1996). Creativity in context: Update to the social psychology of creativity. Westview Press.

Anton, C., Camarero, C., & San José, R. (2014). Public employee acceptance of new technological processes: The case of an internal call centre. Public Management Review, 16(6), 852–875. https://doi.org/10.1080/14719037.2012.758308

Ashworth, G.J. (2005). Senses of Place: Senses of Time (B. Graham, Ed.) (1st ed.). Routledge. https://doi.org/10.4324/9781315243467

Banks, M., & Hesmondhalgh, D. (2009). Looking for work in art education and creative industries policy. International Journal of Cultural Policy, 15(4), 415–430. https://doi.org/10.1080/10286630902923323

Bhattacherjee, A., & Sanford, C. (2006). Influence processes for information technology acceptance: An elaboration likelihood model. MIS Quarterly, 30(4), 805-825. https://doi.org/10.2307/25148755

Cameron, K. S., & Quinn, R. E. (2011). Diagnosing and changing organizational culture: Based on the competing values framework (3rd ed.). Jossey-Bass. https://doi.org/10.1111/j.1744-6570.2006.00052_5.x

Candy, L., & Edmonds, E. (2018). Practice-based research in the creative arts: Foundations and futures from the front line. Leonardo, 51(1), 63-69. https://doi.org/10.1162/LEON_a_01471

Choi, Y. (2021). A study of employee acceptance of artificial intelligence technology, European Journal of Management and Business Economics, 30(3), 318-330. https://doi.org/10.1108/EJMBE-06-2020-0158

Churchill, G. A. (1979). A paradigm for developing better measures of marketing constructs. Journal of Marketing, 16(1), 64–73. https://doi.org/10.2307/3150876

Csikszentmihalyi, M. (2014). Flow and the foundations of positive psychology: The collected works of Mihaly Csikszentmihalyi. Springer. https://doi.org/10.1007/978-94-017-9088-8

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008

DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: A ten-year update. Journal of Management Information Systems, 19(4), 9-30. https://doi.org/10.1080/07421222.2003.11045748

Deuze, M. (2007). Media work. Journal of Media Studies, 10(4), 16–34.

DeVellis, R. F., & Thorpe, C. T. (2021). Scale development: Theory and applications (5th ed.). Sage Publications.

Edmonds, E., Weakley, A., Candy, L., Fell, M., Knott, R., & Pauletto, S. (2005). The studio as laboratory: Combining creative practice and digital technology research. International Journal of Human-Computer Studies, 63(4-5), 452-481. https://doi.org/10.1016/j.ijhcs.2005.04.012

Edwards, M. R., Ramamurthy, K., & Srinivasan, A. (2023). Digital transformation in art education and creative industries: A multilevel analysis of employee acceptance factors. Journal of Management Information Systems, 40(2), 412-438. https://doi.org/10.1080/07421222.2023.2176793

Fernandez, D., & Aman, A. (2021). The influence of robotic process automation (RPA) towards employee acceptance. International Journal of Recent Technology and Engineering, 9(5):295-299.https://doi.org/10.35940/IJRTE.E5289.019521

Florida, R. (2002). The Rise of the Creative Class : And How It's Transforming Work, Leisure, Community and Everyday Life. Canadian Public Policy-analyse De Politiques, 29, 378.

Ford, J. D., Ford, L. W., & D'Amelio, A. (2008). Resistance to change: The rest of the story. Academy of Management Review, 33(2), 362-377. https://doi.org/10.5465/amr.2008.31193235

Friedman, K. (2000). Design knowledge: Context, content, and continuity. Design Studies, 21(3), 411–430. https://doi.org/10.1016/S0142-694X(99)00042-9

Gallivan, M. J., Spitler, V. K., & Koufaris, M. (2005). Does information technology training really matter? A social information processing analysis of coworkers' influence on IT usage in the workplace. Journal of Management Information Systems, 22(1), 153-192. https://doi.org/10.1080/07421222.2003.11045830

Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS Quarterly, 19(2), 213-236. https://doi.org/10.2307/249689

Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (2010). Multivariate data analysis: A global perspective 7 pearson. Upper Saddle River, NJ: Pearson Education

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis (8th ed.). Cengage Learning.

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2022). A primer on partial least squares structural equation modeling (PLS-SEM) (3rd ed.). Sage Publications.

Hesmondhalgh, D. (2012). The cultural industries (3rd ed.). SAGE Publications.

Howkins, J. (2001). The creative economy: How people make money from ideas. Penguin UK.

Jacobs, J. V., Hettinger, L., Huang, Y., Jeffries, S., Lesch, M., Simmons, L., Verma, S. K., & Willetts, J. L. (2019). Employee acceptance of wearable technology in the workplace. Applied Ergonomics, 78, 148–156. https://doi.org/10.1016/J.APERGO.2019.03.003

Jones, C., & Lorenzen, M. (2008). Rethinking creativity in the art education and creative industries. Work, Employment & Society, 22(4), 719–734. https://doi.org/10.1177/0950017008096743

Joshi, K. (1991). A model of users' perspective on change: The case of information systems technology implementation. MIS Quarterly, 15(2), 229-242. https://doi.org/10.2307/249384

Ke, W., & Wei, K. K. (2008). Organizational culture and leadership in ERP implementation. Decision Support Systems, 45(2), 208-218. https://doi.org/10.1016/j.dss.2007.02.002

Kim, H. W., & Kankanhalli, A. (2009). Investigating user resistance to information systems implementation: A status quo bias perspective. MIS Quarterly, 33(3), 567-582. https://doi.org/10.2307/20650309

Klein, S. P., Spieth, P., & Söllner, M. (2024). Employee acceptance of digital transformation strategies: A paradox perspective. Journal of Product Innovation Management, 41(5), 999-1021. https://doi.org/10.1111/jpim.12722

Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. Journal of Chiropractic Medicine, 15(2), 155-163. https://doi.org/10.1016/j.jcm.2016.02.012

Lapointe, L., & Rivard, S. (2005). A multilevel model of resistance to information technology implementation. MIS Quarterly, 29(3), 461-491. https://doi.org/10.2307/25148692

Lee, C. K., & Lee, J. (2018). Computers in art education and creative industries: Investigating training needs for digital tool adoption. International Journal of Human-Computer Interaction, 34(6), 544-556. https://doi.org/10.1080/10447318.2017.1371991

Legris, P., Ingham, J., & Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & Management, 40(3), 191–204. https://doi.org/10.1016/S0378-7206(01)00143-4

Leidner, D. E., & Kayworth, T. (2006). A review of culture in information systems research: Toward a theory of information technology culture conflict. MIS Quarterly, 30(2), 357-399. https://doi.org/10.2307/25148735

Manovich, L. (2001). The language of new media. MIT Press.

Marikyan, D., Papagiannidis, S., & Alamanos, E. (2023). Technology acceptance research: A meta-analysis of the determinants of perceived usefulness and perceived ease of use. Journal of Information Science, 49(1), 56–77. https://doi.org/10.1177/01655515231191177

Martins, E. C., & Terblanche, F. (2003). Building organisational culture that stimulates creativity and innovation. European Journal of Innovation Management, 6(1), 64-74. https://doi.org/10.1108/14601060310456337

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Sage.

Mutambik, I., & Almuqrin, A. (2024). Employee acceptance of digital transformation: A study in a smart city context. Sustainability, 16(4), 1398. https://doi.org/10.3390/su16041398

Nelson, R. R., Todd, P. A., & Wixom, B. H. (2005). Antecedents of information and system quality: An empirical examination within the context of data warehousing. Journal of Management Information Systems, 21(4), 199-235. https://doi.org/10.1080/07421222.2005.11045823

Nguyen, T.-M., & Malik, A. (2021). Employee acceptance of online platforms for knowledge sharing: Exploring differences in usage behaviour. Journal of Knowledge Management, 26(9), 1985–2006. https://doi.org/10.1108/jkm-06-2021-0420

Oreg, S. (2003). Resistance to change: Developing an individual differences measure. Journal of Applied Psychology, 88(4), 680-693. https://doi.org/10.1037/0021-9010.88.4.680

Orlikowski, W. J. (2007). Sociomaterial practices: Exploring technology at work. Organization Studies, 28(9), 1435–1448. https://doi.org/10.1177/0170840607081138

Patrickson, B. (2021). What do blockchain technologies imply for digital art education and creative industries? Creativity and Innovation Management, 30(3), 585-595. https://doi.org/10.1111/caim.12456

Rahimi, R. A. (2020). A Survey of Technology Acceptance Models in the Creative Industry: Exploring Key Limitations. 2020 13th International Conference on Developments in eSystems Engineering (DeSE), 9–14. https://doi.org/10.1109/DeSE51703.2020.9450774

Roca, J. C., Chiu, C. M., & Martínez, F. J. (2006). Understanding e-learning continuance intention: An extension of the Technology Acceptance Model. International Journal of Human-Computer Studies, 64(8), 683-696. https://doi.org/10.1016/j.ijhcs.2006.01.003

Rogers, E. M. (2003). Diffusion of innovations (5th ed.). Free Press.

Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54-67. https://doi.org/10.1006/ceps.1999.1020

Schein, E. H. (2010). Organizational culture and leadership (4th ed.). Jossey-Bass. https://doi.org/10.1016/j.ijproman.2010.09.004

Seddon, P. B. (1997). A respecification and extension of the DeLone and McLean model of IS success. Information Systems Research, 8(3), 240-253. https://doi.org/10.1287/isre.8.3.240

Shneiderman, B. (2007). Creativity support tools: Accelerating discovery and innovation. Communications of the ACM, 50(12), 20-32. https://doi.org/10.1145/1323688.1323689

Silic, M., Back, A., & Sammer, T. (2014). Employee acceptance and use of unified communications and collaboration in a cross-cultural environment. International Journal of e-Collaboration, 10(2), 1–19. https://doi.org/10.4018/ijec.2014040101

Straub, D., Keil, M., & Brenner, W. (1997). Testing the technology acceptance model across cultures: A three country study. Information & Management, 33(1), 1-11. https://doi.org/10.1016/S0378-7206(97)00026-8

Throsby, D. (2001). Economics and culture. Cambridge University Press.

Turner, M., Kitchenham, B., Brereton, P., Charters, S., & Budgen, D. (2010). Does the technology acceptance model predict actual use? A systematic literature review. Information and Software Technology, 52(5), 463–479. https://doi.org/10.1016/j.ijhcs.2009.10.001

Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926

Venkatesh, V., & Speier, C. (1999). Computer technology training in the workplace: A longitudinal investigation of the effect of mood. Organizational Behavior and Human Decision Processes, 79(1), 1-28. https://doi.org/10.1006/obhd.1999.2837

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540

Venkatesh, V., Thong, J. Y., & Xu, X. (2016). Unified theory of acceptance and use of technology: A synthesis and the road ahead. Journal of the Association for Information Systems, 17(5), 328-376. https://doi.org/10.17705/1jais.00428

Wixom, B. H., & Todd, P. A. (2005). A theoretical integration of user satisfaction and technology acceptance. Information Systems Research, 16(1), 85-102. https://doi.org/10.1287/isre.1050.0042

Yoo, Y., Boland, R. J., Lyytinen, K., & Majchrzak, A. (2012). Organizing for innovation in the digitized world. Organization Science, 23(5), 1398–1408. https://doi.org/10.1287/orsc.1120.0771

Yousafzai, S. Y., Foxall, G. R., & Pallister, J. G. (2007). Technology acceptance: A meta-analysis of the TAM: Part 1. Journal of Modelling in Management, 2(3), 251–280. https://doi.org/10.1016/j.technovation.2006.09.002